Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film.
نویسندگان
چکیده
A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.
منابع مشابه
Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes
An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...
متن کاملAdsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes
An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...
متن کاملElectrochemical Analysis of Tryptophan using a Nanostructuring Electrode with Multi-walled Carbon Nanotubes and Cetyltrimethylammonium bromide Nanocomposite
Multi-walled carbon nanotubes (MWCNTs) were immobilized on the surface of a glassy carbon electrode (GCE) in the presence of cetyltrimethylammonium bromide (CTAB) to form a MWCNTs-CTAB nanocomposite-modified electrode. The electrocatalytic response of the modified electrode towards tryptophan (Trp) was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface...
متن کاملVoltammetric Detection of Dopamine and Ascorbic Acid Using a Multi-Walled Carbon Nanotubes/Schiff Base Complex of Cobalt-Modified Glassy Carbon Electrode
The surface of the glassy carbon electrode (GCE) is modified with the composite of new Cobalt complex with a tetradentate Schiff base ligand derived from 3-ethoxysalicylaldehyde and 4,5-dimethyl orthophenylenediamine (CoOEtSal) and multi-walled carbon nanotube (MWCNT). The electrochemical oxidation of ascorbic acid (AA) and dopamine (DA) at the modified electrode was studied using the cyclic an...
متن کاملElectrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode
The electrochemical oxidation of sulfamethazine (SMZ) has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE) by cyclic voltammetry. This modified electrode (MWCNT-GCE) exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less posit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 139 7 شماره
صفحات -
تاریخ انتشار 2014